TUBITAK UZAY at TRECVID 2010: Content-Based Copy Detection and Semantic Indexing

نویسندگان

  • Ahmet Saracoglu
  • Ersin Esen
  • Medeni Soysal
  • Tugrul K. Ates
  • K. Berker Logoglu
  • Mashar Tekin
  • Talha Karadeniz
  • Ayça Müge Sevinç
  • Hakan Sevimli
  • Banu Oskay Acar
  • Ezgi C. Ozan
  • Duygu Oskay Önür
  • Sezin Selçuk
  • A. Aydin Alatan
  • Tolga Çiloglu
چکیده

Ahmet Saracoğlu, Ersin Esen, Medeni Soysal, Tuğrul K. Ateş, Berker Loğoğlu, Mashar Tekin, Talha Karadeniz, Müge Sevinç, Hakan Sevimli, Banu Oskay Acar, Ezgi C. Ozan, Duygu Oskay Onur, Sezin Selçuk, A. Aydın Alatan, Tolga Çiloğlu TÜBİTAK Space Technologies Research Institute Department of Electrical and Electronics Engineering, M.E.T.U. {ahmet.saracoglu, ersin.esen, medeni.soysal, tugrul.ates, berker.logoglu, mashar.tekin, talha.karadeniz, muge.sevinc, hakan.sevimli, banu.oskay, ezgican.ozan, duygu.oskay, sezin.selcuk }@uzay.tubitak.gov.tr {alatan,ciloglu}@eee.metu.edu.tr

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

National Institute of Informatics, Japan at TRECVID 2010

This paper reports our experiments for three TRECVID 2010 tasks: instance search, semantic indexing, and content-based copy detection. For the instance search task, we present a simple approach that uses face-specific features for PERSON and CHARACTER queries and a combination of local and global features for the OBJECT and LOCATION queries. For the semantic indexing task, we report two approac...

متن کامل

TTHU-IMG at TRECVID 2010

Content-based Copy Detection ID Profile Brief Description dragon BALANCED Baseline: SURF + PiP Detection + VBH Indexing + Post Processing tiger NOFA Baseline with different parameters linnet BALANCED Baseline with different parameters and flipped query tortoise NOFA Baseline with different parameters and flipped query

متن کامل

Fudan University at TRECVID 2010 : Semantic Indexing

In this notebook paper we describe our participation in the NIST TRECVID 2010 evaluation. We took part in semantic indexing task of benchmark this year. For semantic indexing, we submitted 3 automatic runs using only IACC training data: Fudan.TV10.3: this run is based on visual features of keyframes. Fudan.TV10.2: this run is based on visual features of keyframes and object detection. Fudan.TV1...

متن کامل

VIREO at TRECVID 2010: Semantic Indexing, Known-Item Search, and Content-Based Copy Detection

This paper presents our approaches and the comparative analysis of our results for the three TRECVID 2010 tasks that we participated in: semantic indexing, known-item search and content-based copy detection. Semantic Indexing (SIN): Our main focus for the SIN task is on the study of the following two issues: 1) the effectiveness of concept detectors for indexing web video dataset, and 2) how to...

متن کامل

Paper TRECVid Semantic Indexing of Video: A 6-Year Ret- rospective

Semantic indexing, or assigning semantic tags to video samples, is a key component for content-based access to video documents and collections. The Semantic Indexing task has been run at TRECVid from 2010 to 2015 with the support of NIST and the Quaero project. As with the previous High-Level Feature detection task which ran from 2002 to 2009, the semantic indexing task aims at evaluating metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010